Transfer Pathways

sdmay22-20

Curt Lengemann - Lead on Middleware/Database Components
Ben Greif - Lead on Testing/Frontend Developer
Luke Turczynski - Lead on APl Management/Database Design Development
Cole Weber - Co-lead on Frontend
Cameron Brecount - Co-lead on User Interface
Scott Thurston - Co-lead on Frontend
Riess Radtke - Co-lead on User Interface

Client: Susie Demoss

Advisor: Dr. Ashraf Gaffar

IOWA STATE UNIVERSITY

Project Vision Addubslyas

v Future v A i v

-
m

v Visit v Apply v Student Life

TRANSIT

p 1. L

Step 2. Enter Coursework ve alre ken or vill ha 0 ity college or university

S Enter Deg

Step 4. Transfer Evaluation

The Transfer Pathways Tool is an
improvement of the current TRANSIT
system that prospective transfer i E——

Term/Year:

our use, all data will be lost after 3

Help

Course Department:

students use to see which of their

Credit Earned:

Grade Earned:

courses will transfer to lowa State (o]

Coursework

Edit
Course

[Eait] S ARE PHY 213 600

Institution ¢ Year/Term ¢ Course ¢ Credit/'Score ¢ Grade ¢

Remove Selected |

[Next >

[Transfer Evaluation >> |

IOWA S Office of Admissions, Enroliment Services Center, Ames, 1A 50011 - 2011 | Phone: (800) 262-3810
UNIVERSITY | Copyright © 19852012, lowa State University | Consumer Inform: Disclosures | College Portrait

Project Vision (Cont.)

Project Users:
e Transfer Student: Potential Student w/ Credits From Another College

@)

O
@)
O

The user should be able to choose to create an account with the system to save their inputs.

The user should be able to sign back in and continue their work.

The user shall be able to enter the school they transferred from and input classes they have taken.
The user shall be able to enter their intended major at lowa State and view a four-year plan of that
major with the classes that have successfully transferred crossed off in both a flowchart and tabular
format.

e Admin: Admissions/Advisors

@)

@)

@)

The admin should be able to sign into an account that has elevated rights.
The admin should be able to view specific students’ saved data.
The admin should be able to view aggregate data regarding students.

Conceptual Sketch

Requirements

e Constraints
o The project shall use the lowa State website template.
o The project shall be able to interact with a workday
backend, or a mocked version.
e Nonfunctional Requirements
o The user interface shall be easy to navigate.
o The user shall be able to complete a session in

under ten minutes.

Selected Functional Requirements

e The project shall accept as input transfer courses and grades
received from other universities.

e The project shall output a four-year plan of the intended major of
the prospective student in table format based on the
existing-four year plan for that major.

e The project shall allow administrator users to view data
regarding individual prospective student users.

e The project shall allow for guest prospective student users to
use the application without creating or signing into an account.

Conceptual Design Diagram

Three main parts

1. Frontend Flontend
2. Middleware

3. Backend Services VM/Server

System Design - Frameworks and Technologies

PHP - frontend and middleware

HTML/CSS - Ul

Bootstrap ISU templates

Laravel REST API framework - frontend and middleware communication
MySQL - database

PHPUnit - Testing

Selenium -Testing

Synk - Testing

System Design - Component Diagram

Frontend g Middleware

@ Transport —C Endpoints Data Okta
Providers
Login
Student Data L(Mockday Database
(Workday)

Course/Major
Selection

4 Year Plan

Aggregate Data

System Design - Class Diagram

Frontend

<<Interface>>
14YearPlanView

+ switchToFlowchart(): void
+ downloadPDF(): void

+ render(): void

+ handleMorelnfo(): void

4YearPlanView

+ switchToFlowchart(): void
+ downloadPDF(): void

+ render(): void

+ handleMorelnfo(): void

updates

_lown controller and interface

Note: Each view has its

in order to make views
interchangeable

1

4YearPlanEventController

+ GetdYearPlan(): void
+ CreatePDF(): void

downloads-pdf-with

PDFCreator

+ create(p: Plan): void

makes-REST-calls-with

1

<<Interface>>
InputValidator

+ validate(): boolean

FormValidator| | TextValidator

+ validate(): boolean + validate(): boolean

FrontendTransport

+ GetdYearPlan(m: Major, saved: List<=Class=): Plan
+ GetSavedClasses(email: String): List<Cla:

+ GetSavedMajors(email: String): List=Major=

+ AddClass(c: Class, email: String): Boolean

+ EditClass(c: Class, email: String): Boolean

+ DeleteClass(c: Class, email: String): Boolean

+ AddMajor(m: Major, email: String): Boolean

+ EditMajor(m: Major, email: String): Boolean

+ DeleteMajor(m: Major, email: String): Boolean
+ EditAccount(s: Student): Boolean

+ AddAccount(s: Student): Boolean

+ Authenticate(): Boolean

+ GetColleges(): List=College>

+ GetCoursesForCollege(c: College): List=Class>
+ GetStudentData(email: String): Student

+ GetAggregateStudentData(): List=Student>

Note
Connected by
REST API

Middleware)

queries

StudentDataREST

+ Authenticate(): Boolean

+ AddAccount(s: Student): Boolean

+ EditAccount(s: Student): Boolean

+ GetStudentData(email: String) Student

|+ GetAggr ntData(): List:

- |+ GetSavedClasses(email: String): List<Class>
+ GetSavedMajors(email: String): List<Major=

+ EditSavedClass(c: Class, email: String, type: String): Boolean
+ EditSavedMajor(m: Major, email: String, type: String): Boolean

queries

V1

<<Interface>>
ActiveDirectory

PlanREST

: + GetdYearPlan(m: Major, saved: List=Class=): Plan

CollegeDataREST

+ GetColleges(): List<College>
+ GetCoursesForCollege(c: College): List<Class>

1

<<Creates=>

FourYearPlanService

- savedClasses: List=Class>
- major: Major

+ processPlan(): Plan

- validateCourse(c: Class): Class
- crossOutCourse(c: Class): void
- getPlanForMajor(m: Major): Plan

7
queries
1

queries

<<Interface>>
Workday

+ GetdYearPlanForMajor(m: Major): Plan
+ GetlSUEquivalent(c: Class): Class

+ GetColleges(): List=College>

+ GetCoursesForCollege(c: College): List=Class=

queries

+ Authenticate(): Boolean

+ AddAccount(s: Student): Boolean

+ EditAccount(s: Student): Boolean

+ GetStudentData(email: String) Student

PN

OktaConnector
- OktaConfinfo: String {readOnly}

+ Authenticate(): Boolean

+ AddAccount(s: Student): Boolean

+ EditAccount(s: Student): Boolean

+ GetStudentData(email: String) Student

L1 5 <<Interface>>
Database

-

1 + query(q: Query): Boolean

A

MySQLDatabaseConnector

- DBConfinfo: String {readOnly}

Mockday

+ query(q: Query): Boolean

System Design - Class Diagram

—

<<Interface>> : updates
Note: Each view has its

_lown controller and interface
in order to make views
interchangeable.

14YearPlanView

+ render(): void
+ handleMorelnfo(): void

4YearPlanEventController

+ Get4YearPlan(): void
+ CreatePDF(): void

downloads-pdf-with
PDFCreator p makes-REST-calls-with

+ create(p: Plan): void 1

+ GetdYearPlan(m: Major, saved: Lis
<<Interface>> + GetSavedClass: L List-
InputValidator + GetSavedMajo
ddClass(c: Cl :
+ validate(): boolean + EditClass(c: Class, email: String)
: + DeleteClass(c: Class, email: String): Boolean
+ AddMajor(m: Major, email: String): Boolean
+ EditMajor(m: Major, email: String): Boolean
+ DeleteMajor(m: Major, email: String): Boolean
N T + EditAccoun udent): Boolean
FormValidator | | TextValidator + AddAccou Student): Boolean
+ Authenticate(): Boolean
+ validate(): boolean + validate(): boolean + GetColleges(): List=College>
+ GetCoursesForCollege(c: College): List=Class=
+ GetStudentData(email: String): Student
+ GetAggregateStudentData(): List=Student>

System Design - Class Diagram

Note: Each view has its

updates Middleware
bwn controller and interface

in order to make views StudentDataREST

interchangeable + Authenticate(): Boolean
B + AddAccount(s: Student): Boolean

+ EditAccount(s: Student): Boolean
+ GetStudentData(email: Stri

|+ GetAggregateStudentData():

|+ GetSavedClasses(;
+ GetSavedMajo
+ EditSavedClas

PlanREST

Note- : + GetdYearPlan(m: Major, saved: List=Clas

Connected by

REST API
CollegeDataREST

+ GetCollege <College>

+ GetSavedMajors(email: String): Li + GetCoursesForCollege(c: College): Lisi=Class=

+ AddClass(c: Class, email: Strin

+ EditClass(c: Class, email: String): Boolean

+ DeleteClass(c: Class, email: String): Boolean
+ AddMajor(m: Major, email: String): Boolean queries
+ EditMajor(m: Major, email: String): Boolean

+ DeleteMajor(m: Major, email: String): Boolean
+ EditAccount(s: Student): Boolean

+ AddAccount(s: Student): Boolean

+ Authenticate(): Boolean

+ GetCollege t=College>

+ GetCoursesForCollege(c: College): List=

+ GetStudentData(email: String): Student

+ GetAggregateStudentData() tudent=

System Design - Class Diagram

StudentDataREST ¢ y

- A:tdh:nncatety) g;)o(;ea?_ coo <<Interface>>
+ AddAccount(s: Student): Boolean z &
+ EditAccount(s: Student): Boolean queries ActiveDirectory
+ GetStudentData(email: String) Student A
2|+ GetAggregateStudentData(): List=Student= + Tuthentlcate’l_:' Boolean
- |+ GetSavedClasses(email: String): List<Class> o nddf'\ccountgs. Student\:. Boolean

+ GetSavedMajors(email: String): List=Major= 7 édltbs-\tcc;urlgstStuder}t;StBooleaSr: sent
+ EditSavedClass(c: Class, email: String, type: String): Boolean = + GetStudentData(email: String) Studen
+ EditSavedMajor(m: Major, email: String, type: String): Boolean FourYearPlanService A

- savedClasses: List=Class> -

- major: Major

OktaConnector

PlanREST <=creates== + processPlan(): Plan

F validateCoursen:jg Class): Class - OktaConfinfo: String {readOnly}
- crossOutCourse(c: Class): void
- getPlanForMajor(m: Major): Plan + Authenticate(): Boolean
1 + AddAccount(s: Student): Boolean

+ EditAccount(s: Student): Boolean
CollegeDataREST queries + GetStudentData(email: String) Student

'+ GetayearPlan(m Major, saved: List=Class=): Plan

+ GetColleges(): List=College> 1
+ GetCoursesForCollege(c: College): List=Class> <<Interface>> L <<Interface>>
Database
1 Workday S

- v(q: V)
queries + Getd4YearPlanForMajor(m: Major): Plan 1 QUG- Queryl: Boolean
+ GetISUEquivalent(c: Class): Class A
+ GetColleges(): List=College> H
+ GeiCoursesForCollege(c: College): Lisi=Class= H

A MySQLDatabaséConnector

queries - DBConfinfo: String {readOnly}
MOCKday + query(q: Query): Boolean

Prototype

Prototype Demo

http://sdmay22-20.sd.ece.iastate.edu/

Design Complexity

1. Frontend: Page Flow Diagramming,
Ul/UX Components

a. Scientific Principle: Harmony, not Email preset Okta'.SSO o
- password login Login with Google

2. Frontend & Middleware: Web QU

Development Standards of PHP,
Bootstrap, and HTML/CSS Do not

a. Mathematical Principle: Using implement Login from scratch

Appropriate Tools Strategically

3. Middleware: JSON Parser for Business
Logic Save as .txt Other Traditional

a. Engineering Principle: Develop and
Understand

A way for users to save

4. Backend Service: Workday | Okta API File-based File-based data for later use
a. Engineering Principle:
Understanding
b. Scientific Principle: Cooperation, Save as .xml
not individualism

Project Plan - Tasks

e Frontend
o Create User Interface screen flow diagram
m Design different components for each page
m Atrticulate flow from one page to another
o Create each individual Ul component by picking high risk components first
m Create Ul for entering in transfer courses
m Create Ul for 4 year plan - highest risk
m Create Ul for login - lowest risk
m Create Ul for aggregate data screen
m Create Ul for viewing students that have accessed the site
o Connect Frontend to Middleware
o Verify Ul design with lowa State Ul/UX domain experts

Project Plan (Cont.) - Tasks

e Middleware
o Integrate JSON parser for Workday API
o Create methods to communicate with Workday API
o Create methods to follow business logic rules to process data
o Create REST API
o Set up Mocked Workday API
e Database
o Set up database
o Integrate database with API

Project Plan (Cont.) - Selected Risks

e Response Time Constraint Failures
o Affected Tasks:
m Connect frontend to middleware
m Create REST API for middleware
o Mitigation:
m RESTAPI
e |[ntegration Issues
o Affected Tasks:
m Create each individual Ul component by picking high risk components first
m Integrate Database and Mocked Workday API
o Mitigation:
m Research
m Modular Ul components

») »))) a
U C Al |0 U
onteric agaleware

. . . . C . LI -) =

O S c Uadllo O O d3 AP

O cC O Cla . dldDd S

O 4 adleware eqra ®))atabase Orkda
Task Name Nov Dec Jan Feb Mar Apr May
Frontend F3

Diagraming

Ul

Integration

Integration

Articulate Page Flow

Verify Ul Design with ISU

Design Page Components

Create Ul for Four-Year Plan Flowchart

Create Ul for Four-Year Plan Table

Create Ul for Entering Courses

Create Ul for Aggregate Data Screen

Create Ul for Viewing Student Info

Create Ul for Prospective Student Account Creation

Create Ul for Login

Create Methods to Communicate with Middleware
Middleware

Set Up Mock Workday API

Create Methods to Process Data

Integrate JSON Parser with API

Create REST API for Frontend Communication

Database
Create Database DDL
Integrate Database to API

M2

Test Plan

e Unit Tests

o Frontend

m Selenium Framework for PHP - Ul components

m PHPUnit - Controller, Transport, other individual functions
o Middleware

m PHPUnit - Mock Workday, Data Provider, endpoints

e Integration and Interface Tests
o Postman - Mock Interface API Calls
o MySQL Workbench - Mock Server
o PHPUnIt - Frontend to Middleware, Middleware to Database

Test Plan (Cont.)

e System Tests
o Selenium Framework for PHP
o Synx - Automated security testing
o Focusing on critical requirements such as entering courses,
displaying four-year plan, switching accounts based on user type
e Regression Tests
o GitLab CI/CD Pipeline - Run all Unit, Integration, and System tests

e Focusing on Testing Pyramid philosophy

Conclusions

Ready to start developing page components

Next semester
o Start Ul development
o Start system development

Individual contributions

Ben - Requirements, testing plan, prototyped four-year plan page

Cole - Design complexity, project plan, profile prototype

Scott - Prototype/html template, Ul design, requirements, project plan
Cameron - Effort estimations, architecture design, flowchart Ul design
Curt - Architecture design, Ul prototype, project risks, conceptual design
diagram, requirements

Riess - Requirements, security testing plan, user needs

Luke - Testing, project plan - schedule

